Conformations of Saturated Six-Membered Ring Phosphorus Heterocycles. ${ }^{19}$ cis- and trans-2-Oxo- and 2-Thio-2-(dimethylamino)-5-tert-butyl1,3,2 λ^{5}-oxazaphosphorinanes: Molecules Related to Cyclophosphamide

Gurdip S. Bajwa, ${ }^{\text {,b }}$ Subramanian Chandrasekaran, ${ }^{1 b}$ J. Howard Hargis, ${ }^{1 \mathrm{c}}$ Alan E. Sopchik, ${ }^{1 \mathrm{~b}}$ Duane Blatter, ${ }^{1 \mathrm{~b}}$ and Wesley G. Bentrude ${ }^{* 1 \mathrm{~b}}$
Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and Auburn University, Auburn, Alabama 36830. Received February 22, 1982

Abstract

Several 5-tert-butyl-2-(dimethylamino)-1,3,2-oxazaphosphorinanes have been prepared. Included are the NH (3 and 4) and $\mathrm{NPh}(5$ and 6) oxides and sulfides. The individual diastereomers of $3-6$ were separated and the cis and trans geometries determined for 4 and 5 by X-ray crystallography (reported elsewhere) and for 3 and 6 by analogy and use of ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data. ${ }^{1} \mathrm{H}$ NMR analysis established that the trans diastereomer (t - Bu and $\mathrm{Me}_{2} \mathrm{~N}$) in all cases is in the chair conformation in solution with t - Bu and $\mathrm{Me}_{2} \mathrm{~N}$ both equatorial. cis-3 and cis-4 are largely in a chair conformation with t-Bu equatorial and $\mathrm{Me}_{2} \mathrm{~N}$ axial. For cis- 3 it is estimated that at room temperature about 22% of the molecules are in a twist conformation, 15. By contrast, cis-5 and cis-6 are largely in the twist form, 15. For cis-5, the percentage of $\mathbf{1 5}$ at room temperature is estimated to be at least 80% and decreases with increasing temperature. The percentage 15 for cis- 3 increases with increasing temperature, estimates ranging only $8-15 \%$ at $18^{\circ} \mathrm{C}$, about 22% at $25^{\circ} \mathrm{C}$, and $35-44 \%$ at $97^{\circ} \mathrm{C}$. It is suggested that the effect of NPh in place of NH in the ring is a steric one in which repulsive interactions between the Ph and axial $\mathrm{Me}_{2} \mathrm{~N}$ destabilize the chair conformer for cis-5. These repulsions are relieved in the twist conformation (15) in which the $\mathrm{Me}_{2} \mathrm{~N}$ is pseudoequatorial. The $\mathrm{Ph} / \mathrm{Me}_{2} \mathrm{~N}$ repulsions are estimated to be at least $1.6 \mathrm{kcal} / \mathrm{mol}$. By use of the steric size of the nitrogen mustard substituent, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$, as an estimate for that of $\mathrm{Me}_{2} \mathrm{~N}$, an upper limit value for the chair \rightarrow twist conformational isomerization $\mathbf{2 1} \boldsymbol{\rightarrow} \mathbf{2 0}$ of $1.8 \mathrm{kcal} / \mathrm{mol}$ can be approximated. This low value compared to those for cyclohexane and 1,3-dioxane is for formation of the specific twist conformation $\mathbf{2 0}$, in which the 5 -carbon is opposite a pseudoaxial phosphoryl oxygen rather than the pseudoaxial Z as in 23. The energy of 23 is probably higher than that of $\mathbf{2 0}$ and dependent on the steric size of Z. To our knowledge, this work represents the first complete conformational analysis, based on ${ }^{1} \mathrm{H} N \mathrm{NR}$, of non-fused-ring 1,3,2-oxazaphosphorinanes for which chair-twist equilibria can be defined.

The 1,3,2-oxazaphosphorinane cyclophosphamide (1a) and its

1

2

1a, $\mathrm{R}=\mathrm{H}, \mathrm{Z}=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$
1b, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{Z}=\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$1 \mathrm{c}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{Z}=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$
analogues isophosphamide (1b) and trophosphamide (1c) are clinically useful anticancer drugs. Furthermore, carbon-substituted derivatives of these molecules have been made and have undergone biological testing. ${ }^{2}$ To be able to correlate potential effects of diastereomeric constitution and conformational differences on biological activity is of considerable interest. Moreover, the 1,3,2-oxazaphosphorinane ring system is worthy of conformational study on its own merits. It is closely related to the far more thoroughly investigated 1,3,2-dioxaphosphorinane ring (2), ${ }^{3}$ which

[^0]displays structural properties, including conformational features, quite different from the parent cyclohexane and 1,3-dioxane rings. Ring system 1 , however, has the added possibility of steric and electronic interactions between various R and Z substituents on the $\mathrm{P}-\mathrm{N}$ system. Furthermore, the bond angles and lengths about N will differ from those about O .
In this particular study, ${ }^{4}$ we have sought to define for this ring system the effect of variation in the nature of the substituent R on the conformational properties of the individual diastereomers of phosphoramidates 3-6. The important finding reported here

3, $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{O}$
4, $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{S}$
5, $\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{O}$
$6, R=P h, X=S$

$\mathrm{Mu}=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$
7
is the large effect of the size of R on the chair-twist conformational equilibrium available to the diastereomers with t - Bu and $\mathrm{Me}_{2} \mathrm{~N}$ cis to each other. More particularly it will become apparent that $\mathrm{Me}_{2} \mathrm{~N}$ is axial in cis- $\mathbf{3}$ and cis-4 but not in the cis diastereomers of 5 and 6 because of the influence of the PhN moiety.

The possibility that the equatorial or axial preference of substituents on phosphorus in certain unsubstituted or 5,5 -disubstituted 1,3,2-oxazaphosphorinanes may be influenced by the nature of the substituent on ring nitrogen was proposed earlier. ${ }^{5}$

[^1]However, configurational assignments were based only on rather tenuous interpretations of variations in the $\mathrm{P}=\mathrm{O}$ IR stretching frequencies. (See below.) The results we report here are also related to NMR studies published earlier for cyclophosphamide (1a) ${ }^{6,7}$ and for the methyl-substituted compounds 7 and 8^{7} and related systems and allow us to better define the conformational equilibria involved. Nonetheless our work represents the first complete conformational analysis of the individual diastereomers of a non-fused-ring 1,3,2-oxazaphosphorinane for which chairtwist equilibria can be defined.

Results

Synthesis. Compounds 5 and 6 were prepared in a straightforward manner (Experimental Section) by reaction of amino alcohol 13 with $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{P}$ followed by S_{8} or $\mathrm{N}_{2} \mathrm{O}_{4}$ oxidation. Oxide $\mathbf{3}$ was synthesized via reaction of $\mathbf{1 1}$ with $\mathrm{Me}_{2} \mathrm{NPOCl}_{2}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. Reaction of amino alcohol 11 with PSCl_{3} followed by treatment with $\mathrm{Me}_{2} \mathrm{NH}$ gave 4. Separation of the individual diastereomers in each case was accomplished by elution column chromatography on SiO_{2}. The sequence for preparation of the amino alcohols is shown in Scheme I.

Characterization of Diastereomers. Cis and trans geometries were correctly assigned to the diastereomers of 5 on the basis of an X-ray crystallographic study of cis-5. ${ }^{4 a}$ Both diastereomers of 4 were similarly characterized. ${ }^{8}$ Since 2-oxo and 2-thio derivatives in 1,3,2-dioxaphosphorinanes have generally similar conformational properties, ${ }^{3}$ diastereomers of $\mathbf{3}$ and 6 were defined structurally by analogy to 4 and 5 once the ${ }^{1} \mathrm{H}$ NMR parameters had been measured for all. Assignments also were consistent with the relative ${ }^{31} \mathrm{P}$ chemical shifts (Table II) for the two diastereomers in nearly every case; i.e., the ${ }^{31} \mathrm{P}$ chemical shift of the cis isomer was upfield of that for the trans isomer except for the nearly equal shifts for cis- and trans-3. Furthermore, the trans isomers all had shorter GLC retention times. These correlations we have also found to be true of the corresponding 2-oxo- and 2-thio-2-Z-5-tert-butyl-1,3,2 λ^{5}-dioxaphosphorinanes. ${ }^{9}$
Conformations and Proton Coupling Constants. The trans diastereomers of 3-6 are readily characterized conformationally by ${ }^{1} \mathrm{H}$ NMR spectroscopy. From the data of Table I, it is apparent that they are very largely in the chair conformation, i.e., one analogous to 14 but with substituents $t-\mathrm{Bu}$ and $\mathrm{Me}_{2} \mathrm{~N}$ both equatorial. Variations in ${ }^{3} J_{\mathrm{HH}}$ and ${ }^{3} J_{\mathrm{HP}}$ are both known to follow Karplus-like relationships. ${ }^{10}$ Thus, e.g., trans- 3 (cases 6 and 7) shows exactly the combination of large J_{Ax} and J_{CX} expected for equatorial placement of the tert-butyl, since axial A and C are both antiperiplanar to $\mathrm{X},{ }^{9}$ and the chair geometry at the phosphorus end of molecule trans- 3 is clear from the combination of large J_{BP} and J_{DP} values along with small J_{AP} and J_{CP}. Similar coupling constants are noted for trans-4-6, i.e. (values in Hz): $J_{\mathrm{AX}}=11.0-11.3 ; J_{\mathrm{CX}}=11.0-11.8 ; J_{\mathrm{BX}}=4.0-4.5 ; J_{\mathrm{DX}}=3.0-4.6$; $J_{\mathrm{AP}}=4.0-5.6 ; J_{\mathrm{BP}}=22.0$ (oxide), 23.2-26.0 (sulfides); $J_{\mathrm{CP}}=$ 4.5-6.8; $J_{\mathrm{DP}}=17.5$ (oxide), 24.0-28.0 (sulfides). Also notable are the large four-bond cross-ring couplings (J_{BD}) between equatorial ring hydrogens, which, for trans-3-6, range 2.0-2.6 Hz as a result of the W configuration of $\mathrm{H}_{\mathrm{B}} \mathrm{CCH}_{\mathrm{D}}$. The greatly increased couplings J_{BP} and J_{DP} to phosphorus for the equatorial hydrogens of the sulfides, compared to those for the oxides, are characteristic of 1,3,2-dioxaphosphorinanes as well. ${ }^{3,9}$ The sums

[^2][^3]of the three-bond HP couplings through nitrogen depend on the nature of the nitrogen substituent, as shown by values of 22.5 Hz for trans- 5 (NPh), 27.8 and 27.4 Hz for trans $\mathbf{3}$ (NH), 28.5 for trans-6 (NPh), and 33.8-34.8 for trans-4 (NH). This variation may reflect changes in hybridization at nitrogen and the relative electronegativities of H and Ph .

The cis diastereomers of $\mathbf{3}$ and 4 likewise populate primarily chair conformations, as shown by coupling constant trends parallel to those for trans-3-6. That minor amounts of other conformations are populated, at least by cis-3, is evidenced by the effects of temperature change on its coupling constants (Table III). This clearly is primarily a chair-twist equilibrium, $\mathbf{1 4} \rightleftarrows \mathbf{1 5}$, as over

$14, \mathrm{R}=\mathrm{H}, \mathrm{Ph}$

$$
15, \mathrm{R}=\mathrm{H}, \mathrm{Ph}
$$

the temperature range $\left(-18\right.$ to $\left.97^{\circ} \mathrm{C}\right)$ the decrease in J_{BP} is offset by the increase in J_{AP} while at the same time only small changes in J_{DP} and J_{CP} take place (Table III). As described below, the particular sort of twist conformation populated by cis-5 and cis-6 (and apparently by cis- $\mathbf{3}$ and -4 in lesser amounts) features J_{AP} and J_{BP} values that are approximately interchanged from those in the chair but retains J_{CP} and J_{DP} values of the same relative magnitudes as those in the chair. A rough estimate of the percentage of conformer 14 populated by cis- 3 can be made by use of the $J_{\mathrm{AP}}(2.8 \mathrm{~Hz})$ and $J_{\mathrm{BP}}(20.7 \mathrm{~Hz})$ values for the cis compound analogous to 3 but with $\mathrm{Me}_{2} \mathrm{~N}$ replaced by MeO. ${ }^{9 \mathrm{c}}$ This substituent is small and strongly axial seeking and compels populations of nonchair forms to be minimal. Using those values,

$$
\begin{gather*}
N(14) \times J_{\mathrm{AP}}(14)+N(15) \times J_{\mathrm{AP}}(15)=J_{\mathrm{AP}}(\text { obsd }) \tag{1}\\
N(15)=(1-N(14)) \tag{2}
\end{gather*}
$$

therefore

$$
\begin{equation*}
N(14)=\left(J_{\mathrm{AP}}(\mathrm{obsd})-J_{\mathrm{AP}}(15)\right) /\left(J_{\mathrm{AP}}(14)-J_{\mathrm{AP}}(15)\right) \tag{3}
\end{equation*}
$$

Similarly, for J_{BP}

$$
\begin{equation*}
N(14)=\left(J_{\mathrm{BP}}(\mathrm{obsd})-J_{\mathrm{BP}}(15)\right) /\left(J_{\mathrm{BP}}(14)-J_{\mathrm{BP}}(15)\right) \tag{4}
\end{equation*}
$$

assuming that in the twist form they are interchanged, and using eq 1-4 where $N(\mathbf{1 4})$ and $N(\mathbf{1 5})$ are mole fractions, one estimates from the values (Table I) for cis-3 at $25^{\circ} \mathrm{C}\left(J_{\mathrm{BP}}=16.8 \mathrm{~Hz}\right.$ and $J_{\mathrm{AP}}=6.5 \mathrm{~Hz}$) that $78-79 \%$ of cis- 3 is in the chair conformation. (A value of 76% arises if J_{AP} and J_{BP} for cis -5 at $-18^{\circ} \mathrm{C}$ are used for the twist contributor. (See following discussion concerning cis-5.) A temperature decrease to $-18{ }^{\circ} \mathrm{C}$ raises the estimated chair population to $85-92 \%$, depending on which set of J values is used and whether J_{AP} or J_{BP} is being matched. At $97^{\circ} \mathrm{C}$ the percentage of chair conformation is lowered to $56-65 \%$. The lack of appreciable contribution of a chair-chair equilibrium is clear from the values of J_{AX} and J_{CX}, which remain high even at 97 ${ }^{\circ} \mathrm{C} . J_{\mathrm{AX}}$ and J_{CX} of course would be small in the alternative chair form.

For cis-5 and cis-6 it is obvious from J values that the predominant geometry is far from that of a chair. We were guided in assigning conformation in these cases by the X-ray crystal structure of cis-5 published earlier. ${ }^{4 a}$ The ORTEP drawing reproduced here (Figure 1) shows the twist conformation of this molecule, which is also illustrated by 15. Coincidentally, the same conformation, or nearly so, exists both in the crystal and in solution. Characteristic of this structure ${ }^{4 \mathrm{a}}$ is the large $\mathrm{H}_{\mathrm{A}} \mathrm{C}_{6} \mathrm{O}_{1} \mathrm{P}$ dihedral angle ($-158 \pm 3^{\circ}$) and large $\mathrm{H}_{\mathrm{A}} \mathrm{C}_{6} \mathrm{C}_{5} \mathrm{H}_{\mathrm{X}}$ dihedral angle (-153 $\pm 2^{\circ}$). These angles confer upon the coupling constant pattern the unique combination of large J_{Ax} and large J_{AP}. These couplings can never both be large in a chair structure. J_{BX} (6.5-7.0 Hz) is increased somewhat, as expected for the relatively small $\mathrm{H}_{\mathrm{B}} \mathrm{CCH}_{\mathrm{X}}$ dihedral angle $\left(-34 \pm 3^{\circ}\right)$. The remaining coupling constants for cis-5, $J_{\mathrm{CX}}, J_{\mathrm{DX}}, J_{\mathrm{CP}}$, and J_{DP}, fit well if twist structure 15 is primarily populated. The X-ray structure shows that the
Table II. ${ }^{31} \mathrm{P}$ Chemical Shifts for 3-6 ${ }^{\boldsymbol{a}}$

12 12
 hidden by overlap. ${ }^{h}$ In m-dichlorobenzene. ${ }^{i}$ Full spectrum not recorded.

Table IV. Chemical Shifts for $\mathbf{3 - 6}^{-6}$ at 300 MHz , Ambient Probe Temperature ($\sim 25^{\circ} \mathrm{C}$)

case	compd	diast	R	X	solvent	concn, \%	$\delta_{\text {A }}$	$\delta_{\text {B }}$	$\delta^{8} \mathrm{C}$	$\delta^{\text {D }}$	δ^{X}	$\delta_{t-\mathrm{Bu}}$	δ_{R}	$\delta^{\mathrm{Me}_{2} \mathrm{~N}}$
1	3	cis	H	0	$\mathrm{C}_{6} \mathrm{D}_{6}$	~ 10	3.82	4.15	2.76	3.16	1.81	0.59	5.54	2.60
2	3	cis	H	0	$\mathrm{C}_{7} \mathrm{D}_{8}{ }^{\text {b }}{ }^{\text {b }}$	2	3.78	4.09	2.72	3.08	1.75	0.60	5.14	2.58
3	3	cis	H	0	CDCl_{3}	~ 10	3.98	4.34	2.94	3.26	1.88	0.90	5.54	2.69
4	3	cis	H	O	CDCl_{3}	0.1	3.99	4.36	2.97	3.27	1.90	0.89	2.48	2.67
5	3	cis	H	0	$\mathrm{Me}_{2} \mathrm{SO}-d_{6}$,	3.88	4.19	2.79	3.07	1.66	0.86	4.67	2.57
6	3	trans	H	0	$\mathrm{C}_{6} \mathrm{D}_{6}$	1	4.24	3.99	3.14	2.92	1.59	0.56	3.62	2.68
7	3	trans	H	0	$\mathrm{C}_{6} \mathrm{D}_{6}$	20	4.26	4.04	3.29	3.18	1.66	0.64	4.84	2.71
8	4	cis	H	S	$\mathrm{C}_{6} \mathrm{D}_{6}$	~ 10	3.88	4.06	2.76	2.76	1.60	0.58	3.31	2.44
9	4	cis	H	S	$\mathrm{C}_{6} \mathrm{D}_{6}$	20	4.00	4.19	2.85	3.00	1.77	0.63	3.65	2.45
10	4	cis	H	S	CDCl_{3}	10	4.12	4.32	3.03	3.21	1.87	0.91	a	2.57
11	4	cis	H	S	$\mathrm{Me}_{2} \mathrm{SO}-d_{6}$	10	4.03	4.19	2.87	3.03	1.65	0.86	5.19	2.41
12	4	trans	H	S	$\mathrm{C}_{6} \mathrm{H}_{6}$	20	4.46	4.10	3.28	3.01	1.67	0.64	2.62	2.72
13	4	trans	H	S	$\mathrm{C}_{6} \mathrm{D}_{6}$	10	4.38	3.99	3.16	2.82	1.56	0.60	2.27	2.75
14	4	trans	H	S	$\mathrm{C}_{6} \mathrm{D}_{6}$	1	4.37	3.94	3.07	2.64	1.51	0.55	1.62	2.72
15	4	trans	H	S	CDCl_{3}	10	4.35	4.20	3.34	3.25	1.79	0.95	2.33	2.85
16	5	cis	Ph	0	$\mathrm{C}_{6} \mathrm{D}_{6}$	1-2	3.78	4.35	3.27	3.41	2.28	0.53	$\begin{aligned} & 6.93(1 \mathrm{H}), 7.18(2 \mathrm{H}), \\ & 7.41(2 \mathrm{H}) \end{aligned}$	2.43
17	5	cis	Ph	0	CDCl_{3}	1-2	4.04	4.50	3.49	3.60	2.42	0.94	$\begin{aligned} & 7.04(1 \mathrm{H}), 7.22(2 \mathrm{H}), \\ & 7.34(2 \mathrm{H}) \end{aligned}$	2.50
18	5	$\mathrm{cis}^{\text {d }}$	Ph	O	MDCB ${ }^{\text {c }}$	1-2	3.91	4.34	3.39	3.49	2.24	0.75		2.47
19	5	trans	Ph	0	$\mathrm{C}_{6} \mathrm{D}_{6}$	1-2	4.38	4.07	3.49	3.37	1.83	0.55	$\begin{aligned} & 7.01(1 \mathrm{H}), 7.21(2 \mathrm{H}), \\ & 7.55(2 \mathrm{H}) \end{aligned}$	2.48
20	6	cis	Ph	S	$\mathrm{C}_{6} \mathrm{D}_{6}$	2-3	3.84	4.48	3.31	3.44	2.47	0.54	$\begin{aligned} & 6.93(1 \mathrm{H}), 7.14(2 \mathrm{H}), \\ & 7.36(2 \mathrm{H}) \end{aligned}$	2.49
21	6	trans	Ph	S	$\mathrm{C}_{6} \mathrm{D}_{6}$	2-3	4.55	3.86	3.68	3.20	1.85	0.59	$\begin{aligned} & 6.99(1 \mathrm{H}), 7.16(2 \mathrm{H}), \\ & 7.40(2 \mathrm{H}) \end{aligned}$	2.58

[^4]

Figure 1. ORTEP drawing of twist cis-5 from X-ray study.
positions of these protons are close to what they would be in a chair-form ring with tert-butyl equatorial. ${ }^{4 a}$ Note that, as expected, large J_{DB} values ($2.0-2.5 \mathrm{~Hz}$) are not encountered with the twist conformations since the coplanar W arrangement is absent in the twist conformation, 15. The coupling constants for cis- 6 also fit well those of a twist conformer.

Chemical Shifts. Within the limited number of compounds examined in this study, it appears that certain useful patterns of relative chemical shifts between diastereomers occur, as can be noted from Tables II and IV. The chemical shift of H_{A} or H_{C} when these hydrogens are cis to the $\mathrm{P}=\mathrm{O}$ is downfield of its counterpart, either H_{B} or H_{D}. The opposite is true when H_{A} and H_{C} are trans to the $\mathrm{P}=\mathrm{O}$. This same type of correlation is found with the 5 -tert-butyl-1,3,2-dioxaphosphorinanes ${ }^{9}$ and may be a result of the deshielding nature of the $\mathrm{P}=\mathrm{O}$. It persists in the oxaza series in spite of the phenyl on nitrogen of 5 and 6 which, because of its own anisotropic properties, could change the relative chemical shifts of H_{C} and H_{D}. Also in a given solvent in every case, the methine hydrogen of the cis diastereomer is downfield of that for the trans. No reliable differentiation of diastereomers

Table V. NH Stretching Frequencies $\left(\mathrm{cm}^{-1}\right.$) for $\mathbf{3}$ and 4 in CDCl_{3}

compd	free NH	H-bond ed NH
cis-3	$3420(0.95)^{a}$	$3235(0.67)$
trans-3	$3392(0.98)$	$3229(0.68)$
cis-4	$3422(0.64)$	$3304(0.06)$
trans-4	$3371(1.62)$	$3249(0.38)$

${ }^{a}$ Numbers in parentheses are absorbances.
based on the chemical shift of the tert-butyl group is evident. The $\mathrm{Me}_{2} \mathrm{~N}$ chemical shifts are somewhat sensitive to conformation. The resonance of the trans isomer is in each case downfield of that of the cis. Clearly the NH resonances of $\mathbf{3}$ and 4 vary widely with solvent and solute concentration, as might be expected where intermolecular hydrogen bonding occurs. (See IR results discussed below.) Higher solute concentrations are associated with downfield shifting of this resonance, as is the use of $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ as solvent. The highest field NH chemical shifts are found in CDCl_{3}. We are reluctant to attempt to correlate these effects with physical phenomena except to note that in a given solvent, higher solute concentration, and presumably increased intermolecular hydrogen bonding, shifts the NH resonance downfield.
Temperature Effects. The temperature effects on the chair-twist equilibrium for cis- 3 discussed above, and in particular the decrease in J_{BP} and increase in J_{AP} at higher temperatures (Table III), demonstrate that the chair conformer is of lower enthalpy. The opposite is true for cis-5. As Table III shows, the twist form of cis- 5 is less favored at higher temperatures as J_{AP} decreases while J_{BP} is increased. Very little 14 is populated by cis -5 at $-18^{\circ} \mathrm{C}$. Chemical shift variations as a function of temperature have not been tabulated as they proved to be uninformative.

Concentration and Solvent Effects on Coupling Constants and Infrared Bands. Effects of solute concentration and solvent nature were carefully investigated to ascertain whether or not intermolecular association might control conformation in the case of cis-4 and especially cis-3. A particular concern is the possibility that the difference in conformational properties of the NH and NPh compounds could be the result of well-known intermolecular hydrogen bonding effects illustrated by 16.7,11 In Table V are

[^5] York, 1976.
compiled the apparent NH stretching frequencies determined by FT IR on 10% solutions in CDCl_{3}. The free (sharp) and H -bonded (broad) bands are found in the expected regions. ${ }^{7}$ Note the relative weakness and smaller frequency shifts of the H -bonded bands of the sulfides.

Dilution to 5% and 1% led in each case to a progressive loss of the H -bonded absorption (compared to the free NH band), which disappeared completely for trans-4 and had absorbance values for cis-3, trans-3, and cis-4 of $<0.003,<0.008$, and <0.001, respectively, at the $1 \%\left(10^{-2}-10^{-3} \mathrm{M}\right)$ level. The $5-10 \%$ solutions of trans-4 exhibited a band of unexplained origin at $3436 \mathrm{~cm}^{-1}$ not seen with the others. trans- 3 had a weak shoulder at about $3400 \mathrm{~cm}^{-1}$.

Most importantly, the J values for $c i s-3$ show virtually no effect of concentration changes in CDCl_{3} (cases 3 and 4) in the very concentration range in which the degree of intermolecular H bonding is clearly affected. They also fail to respond to solvent changes (cases 1-5, Table I). Thus, one can discount the possibility that the chair conformation for cis- $\mathbf{3}$ with $\mathrm{Me}_{2} \mathrm{~N}$ axial is the result of intermolecular H bonding, e.g., that illustrated by structure 16. ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ would be especially destructive of such

16
interactions.) Likewise, structure 17^{12} cannot account for the conformational difference between cis- $\mathbf{3}$ and cis-5 since there is no evidence of intramolecular H bonding, i.e., no IR band remaining on dilution. The lack of a second free NH band with cis- $\mathbf{3}$ may mean that the band for twist-form cis- $\mathbf{3}$ is at close to the same frequency as that for the chair (peak widths at half-height $20-30 \mathrm{~cm}^{-1}$). Where similar checks on effects of solvent and concentration were made with certain of the other compounds (Table I), no important changes in J values were encountered.
H_{Y} Couplings. The values of $J_{\mathrm{YC}}, J_{\mathrm{YD}}$, and J_{YP}, couplings involving the NH (H_{Y}), vary considerably from compound to compound and between diastereomers of a given compound. At this time we are unable to interpret these effects. Quite possibly changes in nitrogen hybridization are involved.

Discussion

The most important single conclusion that can be drawn from the above is that the populations of conformations populated by such 1,3,2-oxazaphosphorinane ring systems can be strongly influenced by the nature of the substituent on ring nitrogen $\left(\mathrm{N}_{3}\right)$. At least this is true when the group on phosphorus is a relatively bulky one such as $\mathrm{Me}_{2} \mathrm{~N}$. Since there seem to be no special stabilizing effects on the chair conformation of the NH compounds, 3 and 4, one is forced to look for possible stabilization of the twist conformations for cis-5 and cis-6 or destabilization of the chair conformation. It is difficult to imagine a stabilizing effect of a bulkier substituent (Ph vs. H). Thus, we conclude that the phenyl group in some way destabilizes the chair conformation of cis-5 and cis-6.

Inspection of molecular models and the X-ray crystal structure of cis-4 shows that the axial $\mathrm{Me}_{2} \mathrm{~N}$ is forced to turn away from the axial hydrogens at carbons 6 and $8 .{ }^{8}$ At the same time the phenyl group of cis- 5 in the chair conformation encounters steric repulsions between its ortho hydrogens and the equatorial $\mathrm{P}=\mathrm{O}$ and to a lesser extent the equatorial hydrogen at C_{4} unless it moves toward a position in which the nitrogen lone pair is orthogonal
(12) The possibility that such bonding occurs with certain 4,6-dimethylcyclophosphamide analogues with $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ fixed axial has been proposed. ${ }^{7}$

Figure 2. Structure for chair conformation of cis-5 based on Dreiding model. Hemispheres based on approximate atomic radii.
to the lone pairs of the benzene ring. What is also evident, however, is the consequent interaction of the ortho phenyl hydrogen with the $\mathrm{Me}_{2} \mathrm{~N}$ group. This situation is depicted in Figure 2. We tentatively ascribe the destabilization of the chair conformations of the cis isomers of 5 and 6 to this interaction. In the twist conformation, the $\mathrm{Me}_{2} \mathrm{~N}$ rotates away from the phenyl and also, as shown in the X-ray study, ${ }^{4 \mathrm{a}}$ is able to assume the conformation in which the trigonal-planar nitrogen system is very nearly coplanar with the $\mathrm{P}=\mathrm{O}$ bond. (This is the geometry preferred by such systems when they are not sterically restricted. ${ }^{4 a, 13}$) The phenyl group moves into a position in which an optimal balance of steric repulsions and phenyl-nitrogen conjugative effects is attained (in the crystal about 30° out of the $\mathrm{P}-\mathrm{N}_{3}-\mathrm{C}_{4}$ plane..$^{4 \mathrm{a}}$) Significantly, a single twist conformer is populated. It is one in which the phenyl and $\mathrm{Me}_{2} \mathrm{~N}$ are moved away from each other, which also minimizes their interaction. On the basis of coupling constants, this same twist conformation is also the one populated to a lesser extent by the NH compounds.

It should be noted that substitution of Ph for H at N_{3} (cis-3 vs. cis-5) changes an equilibrium about $4 / 1$ in favor of the chair (14) into one featuring at least 80% of 15 (actually $10-20 \%$, depending on choice of J_{AP} and J_{BP}, etc.; vide supra.). This is a free energy difference $\left(\Delta \Delta G^{\circ}\right)$ of $1.6 \mathrm{kcal} / \mathrm{mol}$ or more. Restricted rotational entropy may make a significant contribution to the destabilization of 14 for cis-5.

In comparison to the corresponding 1,3,2-dioxaphosphorinane system, which we earlier estimated ${ }^{9 b}$ to be about 60% in a twist conformation like 15 and 30% in chair-form $18\left[\Delta G^{\circ}(18 \rightarrow\right.$ twist $)$

$=-0.4 \mathrm{kcal} / \mathrm{mol}]$, a lesser fraction of cis $-3(14)$, i.e., 20%, has been converted to $\mathbf{1 5}\left[\Delta G^{\circ}(\mathbf{1 4} \rightarrow \mathbf{1 5})=+0.8 \mathrm{kcal} / \mathrm{mol}\right]$. Part of this difference $(0.4 \mathrm{kcal} / \mathrm{mol})$ comes from the entropy of mixing term $(R T \ln 2)$ which favors the twist structure in the $1,3,2$-dioxaphosphorinane system since two enantiomers form in the process $\mathbf{1 8} \rightarrow$ twist. This would bring the expected equilibrium constant for $\mathbf{1 5} / \mathbf{1 4}$, based on 18 , down from 2 to a value of $1\left[\Delta G^{\circ}\right.$ $(\mathbf{1 4} \rightarrow \mathbf{1 5})=0$], but it still leaves 0.8 kcal of unfavorable enthalpy with which to be concerned.

The conversion of $\mathbf{1 4}$ to $\mathbf{1 5}$ or of $\mathbf{1 8}$ to the corresponding twist structure involves two components, eq 5 . One is a favorable

$$
\begin{equation*}
\Delta G_{\mathrm{obsd}}^{\circ}=\Delta G_{\mathrm{Me}_{2} \mathrm{~N}}^{\circ}(\mathrm{ax} \rightarrow \mathrm{eq})+\Delta G_{\mathrm{c} \rightarrow \mathrm{t}}^{\circ} \tag{5}
\end{equation*}
$$

reorientation of the phosphorus end of the molecule in which the $\mathrm{P}=\mathrm{O}$ and $\mathrm{Me}_{2} \mathrm{~N}$ switch axial and equatorial positions on the ring, $\Delta G^{\circ}{ }_{\mathrm{Me}_{2} \mathrm{~N}}(\mathrm{ax} \rightarrow \mathrm{eq})$. This component is illustrated by the isom-

[^6]
Scheme II

21
erization $\mathbf{1 9} \rightarrow \mathbf{2 1}\left(\mathrm{Z}=\mathrm{Me}_{2} \mathrm{~N}\right)$ in Scheme II. The other is the unfavorable chair to twist interconversion (21 to 20 in the $1,3,2$-oxazaphosphorinanes), $\Delta G^{\circ}{ }_{c \rightarrow t}$. How much each of these terms contribute to this difference is difficult to define precisely at this time. From inspection of Dreiding models, it is clear that because of ring flattening by the trigonal-planar ring nitrogen ($\mathrm{P}-\mathrm{N}_{3}-\mathrm{C}_{4}$ angle, $\left.119^{\circ}\right)^{4 \mathrm{a}}$ and the increased $\mathrm{P}-\mathrm{N}$ bond length compared to the $\mathrm{P}-\mathrm{O}$ endocyclic bond length, the distance between the axial $\mathrm{Me}_{2} \mathrm{~N}$ and the axial hydrogen at C_{4} of the 1,3,2-oxaza rings is increased compared to what it is in the 1,3,2-dioxa compounds. This could result in a less favorable $\Delta G^{\circ}{ }_{\mathrm{Me}_{2} \mathrm{~N}}(\mathrm{ax} \rightarrow \mathrm{eq})$ term. On the other hand, the lengthened $\mathrm{P}-\mathrm{N}$ bond compared to the $\mathrm{P}-\mathrm{O}$ bond in the 1,3,2-oxaza system might decrease cross-ring torsional interactions and lower $\Delta G^{\circ}{ }_{c \rightarrow t}$. An estimate of $\Delta G^{\circ}{ }_{c \rightarrow t}$ can be made as follows.

For cyclophosphamide itself, a chair-chair equilibrium has been postulated. ${ }^{6,7}$ Using the previously reported time-averaged couplings ${ }^{7}$ for this molecule in CDCl_{3} of $J_{\mathrm{AP}}=4.7 \mathrm{~Hz}$ and $J_{\mathrm{BP}}=17.7$ Hz and the assumed interchangeability of the J_{AP} and J_{BP} values between the two chair forms, one can estimate the mole fraction of each chair present. For values of J_{AP} and J_{BP} we employed those used earlier (from the cis MeO derivative corresponding to cis-3) of 20.7 and 2.8 Hz in order to estimate an $83-89 \%$ population of the predominant chair conformation, presumably ${ }^{7}$ that with Mu , i.e., $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$, equatorial. Again the percentage depends on whether J_{AP} or J_{BP} is being calculated. This estimate is in good agreement with the value of 86% ($6 / 1$ ratio) reported previously and amounts to -1 kcal for $\Delta G^{\circ}{ }_{\mathrm{Mu}}(\mathrm{ax} \rightarrow \mathrm{eq})$ for the Mu substituent. If this value is applied to the equilibrium $\mathbf{1 4} \boldsymbol{\rightarrow 1 5}$ (or that involving 19-21), then $\Delta G^{\circ}{ }_{c \rightarrow t}$ is about 1.8 $\mathrm{kcal} / \mathrm{mol}$ as derived from eq 5: [$\Delta G^{\circ}{ }_{-\mathrm{t}}=-\Delta G^{\circ}{ }_{\mathrm{Mu}}(\mathrm{ax} \rightarrow \mathrm{eq})$ $\left.+\Delta G^{\circ}{ }_{\text {obsd }}=-(-1)+0.8\right]$. This is somewhat higher than the value of $1 \mathrm{kcal} / \mathrm{mol}$ or less estimated for pentavalent $1,3,2$-dioxaphosphorinane ${ }^{9}$ and 1,3,2-dithiaphosphorinanes systems ${ }^{14}$ but nonetheless much below $\Delta G^{\circ} \rightarrow+\left(25^{\circ} \mathrm{C}\right)$ for either cyclohexane (4-5 kcal/mol) ${ }^{15}$ or 1,3-dioxane ($8 \mathrm{kcal} / \mathrm{mol}$). ${ }^{16}$ (If the above-mentioned differences in ΔS° are considered, $\Delta H^{\circ}{ }_{c \rightarrow 1}$ for the 1,3,2-oxaza and 1,3,2-dioxa rings are more nearly the same.) One therefore expects twist conformations which place C_{5} opposite pseudoaxial phosphoryl oxygen in twist structures such as 15 and 20 to be energetically quite accessible. The $1.8 \mathrm{kcal} / \mathrm{mol}$ figure for $\Delta G^{\circ}{ }_{c \rightarrow 1}$ likely represents a maximum value since $\mathrm{Me}_{2} \mathrm{~N}$ should be, if anything, slightly smaller than Mu. Population of a twist conformation also has been demonstrated for the trans-fused-ring system 22 in which the driving force is the reorientation of the ArO into a pseudoaxial position. ${ }^{17}$

[^7]

It needs to be carefully pointed out that there are two distinct chair to twist conformational changes. The one involved in the above discussion corresponds to the process $\mathbf{2 1} \boldsymbol{\rightarrow 2 0}$, both structures having phosphoryl oxygen axial or pseudoaxial. A second chair to twist isomerization is $19 \rightarrow 23 . \Delta G^{\circ}$ for this process is likely to vary with the steric size of \mathbf{Z} and may be larger than that for $\mathbf{2 1} \boldsymbol{\rightarrow 2 0}$ to which we have assigned low values in the 1,3,2-dioxa- and -oxazaphosphorinanes.

Noteworthy is the failure of any of the cis isomers to undergo measurable chair-chair equilibration to place the tert-butyl axial, structure 24. Evidently ΔG° for chair \rightarrow twist $(\mathbf{2 1} \rightarrow \mathbf{2 0})$ is less

23

24
than ΔG° for placing the tert-butyl axial, $\Delta G^{\circ}{ }_{e q \rightarrow a x}(t$ - Bu$)$. The latter has a value of $1.4-1.8 \mathrm{kcal} / \mathrm{mol}$ in 1,3 -dioxanes ${ }^{18}$ and trimethylene sulfites ${ }^{19}$ and could be similarly low when a tert-butyl is placed axial opposite one nitrogen and one oxygen. However, the effect of substituent $\mathrm{R}(\mathrm{H}$ or Ph$)$ on $\Delta G^{\circ}{ }_{\text {eq } \rightarrow \mathrm{ax}}(t-\mathrm{Bu})$ is unknown and might raise its value above $2 \mathrm{kcal} / \mathrm{mol}$. In any event, rather than populate 24, cis-3 and cis-5 adopt conformations 14 and 15 with t-Bu equatorial or pseudoequatorial. This is in keeping with the relatively low $\Delta G^{\circ}{ }_{c \rightarrow t}(\mathbf{2 1} \boldsymbol{2 0})$ discussed above, regardless of its precise value.

The chair conformations found for trans-3-6 are in accord with the relatively large size of the $\mathrm{Me}_{2} \mathrm{~N}^{3}$ and with the conformations populated by trans-18.96 With smaller Z on phosphorus, depopulation of the diequatorially substituted chair can be observed for the trans-1,3,2-oxazaphosphorinanes. ${ }^{9 c}$

Our results show, however, that in the absence of substituents larger than hydrogen on N_{3} the $\mathrm{Me}_{2} \mathrm{~N}$ group is not so large that it cannot be forced axial in the presence of another sterically biasing substituent on the ring, as, for example, the 5 -tert-butyl in $c i s-\mathbf{3}$ and $c i s-4$. There is even the possibility, as discussed earlier, that the $\mathrm{Me}_{2} \mathrm{~N}$ in the 1,3,2-oxaza system may be sterically somewhat smaller than it is in the 1,3,2-dioxa ring based on considerations of models and X-ray structures showing increased intramolecular distances. Therefore, concerning the substituted cyclophosphamides $\mathbf{7}$ and $\mathbf{8}$, it seems quite reasonable that a conformational equilibria should be found. Moreover, it is most probable that the diastereomer with more equal populations of conformers should be $7\left(J_{\mathrm{AP}}=15.3 \mathrm{~Hz}^{7}\right)$, i.e., equilibrium $25 \rightleftharpoons$ 26. In $\mathbf{2 5}$ the methyl next to ring nitrogen is 1,3 -synaxial to the

Mu. By contrast conformer 27 of diastereomer 8 places the methyl next to ring oxygen axial and in closer proximity to the Mu than is the methyl in 25 . Conformers 25 and 27 are both thereby depopulated. Though the effect of the axial methyl in 25 and 27

[^8]is the same, i.e., the shifting of the equilibria $\mathbf{2 5} \rightleftharpoons \mathbf{2 6}$ and $\mathbf{2 7} \rightleftharpoons$ 28 toward the right, the latter equilibrium should exhibit a higher population of the conformer on the right. The reported ${ }^{7} J_{\mathrm{BP}}$ value of 2.4 Hz indeed shows the $\mathbf{2 7} \rightleftharpoons \mathbf{2 8}$ equilibrium to be strongly biased to the right.

28
In similar fashion probable structural assignments for the 4-methyl-substituted cyclophosphamides ${ }^{2 a, c}$ can be made and equilibria discussed. Clearly the cis diastereomer should be confined to a single chair conformation with both groups equatorial. For the trans diastereomer it is likely that the equilibrium $\mathbf{2 9} \rightleftarrows \mathbf{3 0}$ pertains. ${ }^{2 \mathrm{a}}$ The destabilization of the axial Mu in $\mathbf{3 0}$

will be at least partially offset by the axial methyl in 29 , which will displace the equilibrium toward the Mu-axial conformer to a greater extent than in cyclophosphamide itself. It is our view that with trans-6-methylcyclophosphamide the Mu-axial conformer analogous to 30 should be even more favored.

Finally, in reference to IR studies referred to in the introduction to this paper, we believe on the basis of our work that the postulation ${ }^{5}$ for symmetrically 5,5 -disubstituted 1 with $Z=$ alkylNH or PhNH that when $\mathrm{R}=$ alkyl or Ph , a chair conformation with amino group equatorial is highly populated may indeed be correct. However, since such a Z is much smaller than Mu , there could be, in our opinion, a reasonably large and perhaps predominant percentage of the alternative chair conformation populated in such cases. (See cyclophosphamide itself. ${ }^{7}$) It is most unlikely that conformations of such molecules with $\mathrm{Z}=\mathrm{PhO}$ should be, as claimed,'s strongly perturbed by change in ring nitrogen substituent from $\mathrm{R}=\mathrm{H}$ ($\mathrm{P}=\mathrm{O}$ axial) to $\mathrm{R}=\mathrm{Ph}, \mathrm{Me}(\mathrm{P}=\mathrm{O}$ equatorial). Thus in work to be published later on compounds analogous to 3-6 but with $Z=M e O$, we find no influence of the nature of R on conformational equilibria. ${ }^{9}$ The $\mathrm{P}=\mathrm{O}$ IR stretching frequency shifts observed ${ }^{5}$ on changing the substituent on ring nitrogen are quite likely entirely unrelated to configuration at phosphorus. We have found this same IR shift to occur in comparing trans- 3 to trans-5, ${ }^{\text {c }}$ both of which clearly have the $\mathrm{P}=\mathrm{O}$ axial in solution. (See above discussion of their ${ }^{1} \mathrm{H}$ NMR spectral parameters.) The intrinsic effect of a substituent change on IR frequency independent of $\mathrm{P}=\mathrm{O}$ orientation must be considered in these cases. Uncertainties accompanying the use of $\mathrm{P}=\mathrm{O}$ stretching frequencies to assign configuration at phosphorus in 1,3,2-oxazaphosphorinanes have been noted previously.?

Experimental Section

Materials. All solvents and materials were reagent grade or better and were used as received or purified as required. CHCl_{3} was purified free of EtOH for IR studies. Reactions involving trivalent phosphorus were routinely run under an atmosphere of nitrogen or argon. Elemental analyses were done by Galbraith Laboratories, Knoxville, TN. Melting points are uncorrected. Gas chromatography was routinely performed on an HP 5830 thermal conductivity instrument using silanized $3-4 \%$ QF-1 on $80 / 100$ Gas-Chrom Q in 0.25 -in. glass columns.

Spectroscopy. ${ }^{1} \mathrm{H}$ NMR spectra were run in the FT mode on a Varian SC 300 instrument at $300 \mathrm{MHz}, 32 \mathrm{~K}$ data base, $3000-\mathrm{Hz}$ SW, $5.459-\mathrm{s}$ acquisition times. Coupling constants were taken from inspection of $100-\mathrm{Hz}$ expansions of the $\mathrm{H}_{A} / \mathrm{H}_{B}, \mathrm{H}_{C} / \mathrm{H}_{\mathrm{D}}$, and H_{X} spectra and are probably accurate to $\pm 0.2 \mathrm{~Hz}$. The spectrum of cis- 5 was also measured at 90 MHz (Varian EM 390, CW mode) and iteratively analyzed with the laocnz program. Coupling constants were assigned by decoupling H_{X} in all cases to distinguish, e.g., J_{AP} from J_{AX}. In key instances H_{Y}
(i.e., NH) was irradiated to allow correct assignments of couplings to that proton. ${ }^{31} \mathrm{P}$ measurements were made at 32.2 MHz with a Varian FT-80 spectrometer under proton noise decoupling conditions. FT infrared spectra were determined on a Nicolet FT-IR Model 7199 spectrometer with $0.1-\mathrm{mm}$ cells.

Diethyl Isopropylidenemalonate. Diethyl isopropylidenemalonate was synthesized according to a literature ${ }^{20}$ procedure in 48% yield [bp $120-125^{\circ} \mathrm{C}(18 \mathrm{~mm})$; lit. bp $\left.111-113^{\circ} \mathrm{C}(9 \mathrm{~mm})\right]$ and was converted ${ }^{182}$ to diethyl tert-butylmalonate in 68% yield [bp $107-108{ }^{\circ} \mathrm{C}(13 \mathrm{~mm})$; lit. ${ }^{182}$ bp $\left.109-114^{\circ} \mathrm{C}(17 \mathrm{~mm})\right]$.

2-Carbethoxy-3,3-dimethylbutyric Acid (9). Solid potassium hydroxide ($15 \mathrm{~g}, 0.231 \mathrm{~mol}$) was added to diethyl tert-butylmalonate (50.0 g , 0.231 mol) dissolved in 120 mL of absolute ethanol followed by a $3-\mathrm{h}$ reflux. The reaction mixture was then cooled to room temperature. Ethanol was removed by rotary evaporation, and the solid residue was dissolved in $\sim 150 \mathrm{~mL}$ of water. Ether extraction ($3 \times 100 \mathrm{~mL}$) recovered the starting material. The water layer was acidified with 10% HCl , and an oil separated out. This heterogeneous mixture was extracted with ether ($3 \times 100 \mathrm{~mL}$), and the dried $\left(\mathrm{MgSO}_{4}\right)$ combined ether layers were removed by rotary evaporation to leave 38 g of an oily residue, 93% yield based on the reacted diethyl tert-butylmalonate; ${ }^{1} \mathrm{H}$ NMR (60 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.30(1 \mathrm{H}, \mathrm{s}$, methine H$), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 9.9(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{H}$). Half-ester 9 was used without further purification.

2-Carbethoxy-3,3-dimethylbutyramide (10). A mixture of 2 -carbeth-oxy-3,3-dimethylbutyric acid ($9,80 \mathrm{~g}, 0.42 \mathrm{~mol}$) and thionyl chloride (60 $\mathrm{g}, 0.50 \mathrm{~mol}$) was heated under reflux for 1.5 h . After the reaction was cooled to room temperature, the excess thionyl chloride was removed under reduced pressure. Anhydrous ether (1500 mL) was added to the remaining residue, and anhydrous ammonia was passed into the solution until no more precipitate formed. The precipitate was filtered off and washed with ether ($3 \times 50 \mathrm{~mL}$). The combined ether solutions were dried $\left(\mathrm{MgSO}_{4}\right)$ and rotary evaporated to leave a crystalline residue that was recrystallized from absolute ethanol-pentane to obtain pure amide ester 10: 22 g (29% yield), mp $103-104^{\circ} \mathrm{C}$; 'H NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08\left(9 \mathrm{H}, \mathrm{s}, t\right.$-Bu), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J=7 \mathrm{~Hz}\right), 3.08(1 \mathrm{H}, \mathrm{s}$, methine H$), 4.18\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J=7 \mathrm{~Hz}\right), 6.10(<1 \mathrm{H}$, br s, NH or OH), $6.95(<1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}$ or OH). Improved yields were obtained by use of PCl_{5}.

2-(Hydroxymethyl)-3,3-dimethylbutylamine (11). A solution of $\mathbf{1 0}$ ($9.2 \mathrm{~g}, 0.051 \mathrm{~mol}$) in anhydrous THF (70 mL) was added over a $1-\mathrm{h}$ period to a stirred slurry of lithium aluminum hydride ($5.6 \mathrm{~g}, 0.15 \mathrm{~mol}$) in anhydrous THF (80 mL). After 2 days of reflux, the reaction mixture was cooled and then hydrolyzed by the addition of 7 mL of water followed by 54 mL of $15 \% \mathrm{NaOH}$ solution and another 18 mL of water. The resulting mixture was stirred for an hour. The ether layer was separated, and the remaining aqueous layer was extracted with ether (3 $\times 150 \mathrm{~mL})$. The combined ether layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and rotary evaporated to leave a residue, which on distillation at reduced pressure gave 11, an oil; 3.10 g (48% yield), bp $92-93^{\circ} \mathrm{C}(1.75 \mathrm{~mm})$. Workup of reductions run on a 5 -g scale by simply adding at $0^{\circ} \mathrm{C}$ a 3 -mol excess of $\mathrm{H}_{2} \mathrm{O}$ to quench remaining LiAlH_{4} gave pure amine alcohol in 75% yield. The use of base on the large-scale reactions avoided occasional gum formation; ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82(9 \mathrm{H}, \mathrm{s}$, t-Bu), $1.20-1.63(1 \mathrm{H}, \mathrm{m}$, methine H$), 2.20(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.42-2.83$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 3.05-3.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{ON}: \mathrm{C}, 64.12 ; \mathrm{H}, 12.98$. Found: $\mathrm{C}, 64.24 ; \mathrm{H}, 12.76$.
\boldsymbol{N}-Phenyl-2-carbethoxy-3,3-dimethylbutyramide (12). Under conditions of vigorous stirring were mixed aniline ($47 \mathrm{~g}, 0.50 \mathrm{~mol}$), small pieces of sodium ($3.0 \mathrm{~g}, 0.13 \mathrm{~mol}$), and copper powder $(0.50 \mathrm{~g}$). Mild heating resulted in an effervescent reaction. Another 8.5 g of sodium was added over a $2-\mathrm{h}$ period. After further heating for $5 \mathrm{~h}, 0.5 \mathrm{~g}$ of aniline was added, and heating was continued for another 0.5 h . The reaction mixture was cooled to room temperature. To it was added a quantity of diethyl tert-butylmalonate ($108 \mathrm{~g}, 0.502 \mathrm{~mol}$). Gentle heating initiated a vigorous reaction. About 60 mL of dry toluene was added followed by 3 h of gentle heating. To the cooled reaction mixture was added cautiously 500 mL of ice water. Acidification with 420 mL of $12 \% \mathrm{HCl}$ yielded a black, oily mass, which was then ether extracted. Removal of the MgSO_{4}-dried ether and addition of 20 mL of EtOH led in 2 days to the crystallization of several grams of the diamide byproduct. The filtrate was concentrated and vacuum distilled at $143-145^{\circ} \mathrm{C}(1 \mathrm{~mm})$ to afford 87 g (66% crude yield) of nearly pure monoamide 12 , which crystallized overnight, $\mathrm{mp} 63-65^{\circ} \mathrm{C}$. Recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ of 200 mg of this material gave 150 mg of colorless crystals: mp $67-69^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.0-7.8(5 \mathrm{H}, \mathrm{m}$, aromatic), $4.18\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{O}, J_{\mathrm{HH}}=7 \mathrm{~Hz}\right.$), $3.20(1 \mathrm{H}$, s, methine H), $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J_{\mathrm{HH}}=7 \mathrm{~Hz}\right), 1.93(9 \mathrm{H}, \mathrm{s}, t$ - Bu). Anal.

[^9]Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ON}_{3}$: $\mathrm{C}, 68.44 ; \mathrm{H}, 7.98 ; \mathrm{N}, 5.32$. Found: $\mathrm{C}, 68.50$; $\mathrm{H}, 8.31$; $\mathrm{N}, 5.55$. Compound 12 was also synthesized via the acid chloride and aniline according to the preparation of $\mathbf{1 0}$.

N-Phenyl-2-(hydroxymethyl)-3,3-dimethylbutylamine (13). Compound $12(85 \mathrm{~g}, 0.32 \mathrm{~mol})$ in 150 mL of ether was added over 1.5 h to a stirred mixture of $\mathrm{LiAlH}_{4}(25 \mathrm{~g}, 0.65 \mathrm{~mol})$ in 60 mL of ether cooled to $10^{\circ} \mathrm{C}$. After 6 h at room temperature and 90 h at reflux, the mixture was worked up by successively adding 25 mL of $\mathrm{H}_{2} \mathrm{O}$ (1.5-h period), a solution of 75 g of NaOH in 110 mL of $\mathrm{H}_{2} \mathrm{O}$, another 20 mL of $\mathrm{H}_{2} \mathrm{O}$, and again 75 g of NaOH in 110 mL of $\mathrm{H}_{2} \mathrm{O}$. The ether layer was separated and the aqueous mixture extracted with ether. Evaporation of the combined dried ether layers gave 60 g of crude product 13. Distillation yielded 46 g (69%) of 99.8% pure amino alcohol (GLC), 13, bp $135-138^{\circ} \mathrm{C}(1 \mathrm{~mm})$. Reductions on a $5-\mathrm{g}$ scale could be worked up by simply quenching the LiAlH_{4} by the addition at $0^{\circ} \mathrm{C}$ of a $3-\mathrm{mol}$ excess of $\mathrm{H}_{2} \mathrm{O}$ to give 95% yields of pure amine alcohol: ${ }^{1} \mathrm{H}$ NMR $(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.95(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.30-1.80(1 \mathrm{H}, \mathrm{m}$, methine H$), 3.35(2$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ and $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$ exchange confirmed), $2.80-3.35(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ $\left.{ }_{2} \mathrm{NH}\right), 3.50-4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.45-6.85(3 \mathrm{H}, \mathrm{m}$, aromatic), 6.95-7.30 ($2 \mathrm{H}, \mathrm{m}$, aromatic); 99.8% pure by GLC. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ON}: \mathrm{C}, 75.32 ; \mathrm{H}, 10.21 ; \mathrm{N}, 6.76$. Found: $\mathrm{C}, 74.95 ; \mathrm{H}, 10.39$; N, 6.75 .
cis - and trans-2-(Dimethylamino)-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (3). A modification of a procedure ${ }^{21}$ for preparation of cyclophosphamide was used. A solution of $\mathrm{Me}_{2} \mathrm{NPOCl}_{2} 22(3.8 \mathrm{~g}, 0.024$ mol) in 34 mL of ethyl acetate was added over a $15-\mathrm{min}$ period to a stirred solution of 2-(hydroxymethyl)-3,3-dimethylbutylamine (11) (3.1 $\mathrm{g}, 0.024 \mathrm{~mol}$) and triethylamine ($4.8 \mathrm{~g}, 0.48 \mathrm{~mol}$) in 21 mL of ethyl acetate cooled to $5^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temperature for 48 h , the triethylamine hydrochloride was filtered off, The viscous oil remaining from evaporation of the solvent was short-path vacuum distilled to give 5.0 g (95% crude yield) of a mixture of solid diastereomers of 3 in $41 / 59$ (cis/trans) ratio (GLC). trans- $\mathbf{3}$ crystallized in 95% diastereomeric purity from ethyl acetate, mp 121-123 ${ }^{\circ} \mathrm{C}$. Elution column chromatography of 0.50 g of crude product $\left(\mathrm{SiO}_{2}\right)$ gave pure cis-3, $0.12 \mathrm{~g}, \mathrm{mp} 102-104^{\circ} \mathrm{C}$, using ethyl acetate as eluting solvent, and also a pure mixture of both diastereomers $(0.30 \mathrm{~g})$ used for quantitative elemental analysis. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 49.08 ; \mathrm{H}, 9.61$; P, 14.06. Found: C, 49.09; H, 9.78; P, 14.02.
cis- and trans-2-(Dimethylamino)-2-thio-5-tert-butyl-1,3,2 λ^{5}-dioxaphosphorinane (4). Into 56 mL of ether at $0^{\circ} \mathrm{C}$ were added dropwise and simultaneously a solution of $\mathrm{PSCl}_{3}(2.6 \mathrm{~g}, 0.015 \mathrm{~mol})$ in 26 mL of ether and a solution of 2-(hydroxymethyl)-3,3-dimethylbutylamine, 11 $(2.0 \mathrm{~g}, 0.015 \mathrm{~mol})$, and triethylamine $(3.1 \mathrm{~g}, 0.030 \mathrm{~mol})$ also in 26 mL of ether. On completion of the addition, stirring was continued at room temperature for 4 h . The amine hydrochloride was removed by filtration and the ether by rotary evaporation. The residue was redissolved in 30 mL of dry ether. Anhydrous $\mathrm{Me}_{2} \mathrm{NH}$ was passed through the solution until no more precipitate was generated. Filtration of the reaction mixture and ether evaporation left solid product $4,3.6 \mathrm{~g}$ (100% crude yield), containing both diastereomers in $41 / 59$ (cis/trans) ratio (GLC). Separation of the diastereomers was effected by open column elution chromatography with hexane mixed with increasing amounts of CHCl_{3} as eluting solvent. From a $1.5-\mathrm{g}$ mixture were obtained 50 mg of $\mathrm{cis}-4$ (mp 112-113 ${ }^{\circ} \mathrm{C}$) and also 55 mg of trans-4 (mp 105-106 ${ }^{\circ} \mathrm{C}$) along with 100 mg of a mixture of the two, all better than 99% pure by GLC. Quantitative elemental analysis was done on the mixture. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~N}_{2}$ OPS: $\mathrm{C}, 45.74 ; \mathrm{H}, 8.96 ; \mathrm{P}, 13.11$. Found: $\mathrm{C}, 45.68 ; \mathrm{H}$, 8.99; P, 12.90.
cis - and trans-2-(Dimethylamino)-3-phenyl-5-tert-butyl-1,3,2-oxazaphosphorinane. A solution of hexamethylphosphorous triamide $(5.0 \mathrm{~g}$, $0.024 \mathrm{~mol})$ and amino alcohol $13(4.0 \mathrm{~g}, 0.024 \mathrm{~mol})$ in toluene (40 mL) and ethyl acetate (40 mL) was refluxed for 6 h , after which the solvent was removed under vacuum to afford 6.6 g of a colorless liquid. Distillation gave 4.2 g (62%) of the desired trivalent product, bp 165-166 ${ }^{\circ} \mathrm{C}(3 \mathrm{~mm}), 99 \%$ pure by GLC. Two signals were present in the ${ }^{31} \mathrm{P}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ at $\delta 136.3$ (cis, 75%) and 138.3 (trans, 25%). ${ }^{1} \mathrm{H}$
(21) Zon, G.; Ludeman, S. M.; Egan, W. J. Am. Chem. Soc. 1977, 99, 5785.
(22) Walsh, E. N.; Toy, A. D. F. Inorg. Synth. 1963, 7, 69.

NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.85,0.90(3 \mathrm{H}$, s, tert-butyl), $1.60-2.05(1$ H, m, methine H$), 2.65,2.55\left(6 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Me} \mathrm{N}_{2} \mathrm{~N}\right.$ ratio $23 / 77$), 3.45-3.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 3.70-4.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), 6.70-7.33 (5 $\mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$).
cis- and trans-2-(Dimethylamino)-2-oxo-3-phenyl-5-tert-butyl-
 in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-35^{\circ} \mathrm{C}$ was oxidized by dropwise addition of 9.1 mL of a 3% solution of $\mathrm{N}_{2} \mathrm{O}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was warmed slowly to $32^{\circ} \mathrm{C}$. Solvent removal left 3.0 g of a yellow solid, crude 5. GLC analysis showed only about 4% of unreacted trivalent material along with the product oxides in $75 / 25$ (cis/trans) ratio. On solution in 10 mL of benzene and cooling to about $10^{\circ} \mathrm{C}, 850 \mathrm{mg}$ (2 crops) of crystalline cis-5, mp 165-166 ${ }^{\circ} \mathrm{C}$, was obtained; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta+8.5$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$: $\mathrm{C}, 60.82 ; \mathrm{H}, 8.45 ; \mathrm{P}, 10.46$. Found: $\mathrm{C}, 60.49$; H, 8.62; P, 10.75 .

Chromatography on a gravity column $\left(\mathrm{SiO}_{2}\right)$ packed and eluted with $\mathrm{Et}_{2} \mathrm{O}$ separated a $3.0-\mathrm{g}$ mixture of 5 similar to the above into 1.3 g of the major isomer (cis-5) and, after recrystallization, 0.3 g of the minor one (trans-5); $\mathrm{mp} \mathrm{125-126}{ }^{\circ} \mathrm{C}$ from ether; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta+10.9$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 60.82 ; \mathrm{H}, 8.45 ; \mathrm{P}, 10.46$. Found: C, 60.66 ; $\mathrm{H}, 8.57$; $\mathrm{P}, 10.50$.

In an alternative route to 5, 2-chloro-3-phenyl-5-tert-butyl-1,3,2-oxazaphosphorinane was prepared by addition of a solution of amino alcohol $13(12 \mathrm{~g}, 0.058 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~g}, 0.15 \mathrm{~mol})$ in 50 mL of ether dropwise and simultaneously with a solution of $\mathrm{PCl}_{3}(8.0 \mathrm{~g}, 0.058 \mathrm{~mol})$ in 50 mL of ether to 100 mL of ether stirred and cooled to about $10^{\circ} \mathrm{C}$. Following the addition, the reaction mixture was stirred for 1.5 h at ice-bath temperature and for another 2 h at room temperature. Removal of the solid amine hydrochloride and ether followed by vacuum distillation (bp 155-158 ${ }^{\circ} \mathrm{C}(1.3 \mathrm{~mm})$) gave an oil: $9.5 \mathrm{~g}(61 \%) ; \sim 90 \%$ pure by ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta+148.7 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta 0.92$ ($9 \mathrm{H}, \mathrm{s}, t$-Bu), 1.75-2.15 ($1 \mathrm{H}, \mathrm{m}$, methine H), 3.05-3.87 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{NPh}\right), 4.00-4.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 7.0-7.4\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

By a procedure parallel to that for preparation of 4, a reaction involving $\mathrm{Me}_{2} \mathrm{NH}$ and the above trivalent chloro compound gave trivalent 2-(dimethylamino)-3-phenyl-5-tert-butyl-1,3,2-oxazaphosphorinane in $10 / 90$ cis/trans ratio (${ }^{31} \mathrm{P}$ NMR). Oxidation by $\mathrm{N}_{2} \mathrm{O}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded trans-rich 5 from which trans- 5 was easily separated by elution chromatography.
cis - and trans-2-(Dimethylamino)-2-thio-3-phenyl-1,3,2 λ^{5}-oxazaphosphorinane (6). The above trivalent precursor ($0.14 \mathrm{~g}, 0.50 \mathrm{mmol}$) of diastereomer ratio $75 / 25$ (cis/trans) was dissolved in 5 mL of benzene and to it was added $\mathrm{S}_{8}(0.016 \mathrm{~g}, 0.50 \mathrm{mmol})$ over a period of 5 min . After the mixture was heated at $40^{\circ} \mathrm{C}$ for 40 min , GLC showed the reaction to be complete with product sulfide 6 in cis/trans ratio of $77 / 23$.

Elution column chromatography $\left(\mathrm{SiO}_{2}\right)$ of 500 mg of crude 6, cis/ trans ratio $60 / 40$, using as eluting solvents pentane, $99 / 1$ pentane-ether, and $98 / 2$ pentane-ether afforded 100 mg of the GLC-pure trans-6, mp $94-95^{\circ} \mathrm{C}$. Nearly pure cis- 6 from chromatography (200 mg) was recrystallized from ether and then benzene to give 100 mg of colorless crystals, mp 145-145.5 ${ }^{\circ} \mathrm{C}$. An 80/20 mixture of diastereomers was used for elemental analysis. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OPS}: \mathrm{C}, 57.70 ; \mathrm{H}$, $8.00 ;$ P, 9.92 . Found: C, 57.74; H, 8.17; P, 9.91.

Acknowledgment. Support of this work by a P.H.S. grant (CA 11045) from the National Cancer Institute of the D.H.H.S. to W.G.B. is gratefully acknowledged. W.G.B. thanks the Alexander von Humboldt Stiftung for a fellowship at the Technische Universität, Braunschweig, West Germany, during the writing of this manuscript. We are grateful to Dale Otteson, who obtained the FT IR spectra.

Registry No. 3, isomer 1, 77815-22-6; 3, isomer 2, 77815-23-7; 4, isomer 1, 82757-16-2; 4, isomer 2, 83096-33-7; 5, isomer 1, 70219-43-1; 5 , isomer $2,70219-44-2 ; 6$, isomer $1,83096-34-8 ; 6$, isomer 2, 83096-35-9; 9, 83096-36-0; 10, 83096-37-1; 11, 15521-17-2; 12, 83096-38-2; 13, 83096-39-3; cis-2-(dimethylamino)-3-phenyl-5-tert-butyl-1,3,2-oxazaphosphorane, 83096-40-6; trans-2-(dimethylamino)-3-phenyl-5-tert-bu-tyl-1,3,2-oxazaphosphorane, 83096-41-7; 2-chloro-3-phenyl-5-tert-bu-tyl-1,3,2-oxazaphosphorane, 83096-42-8; diethyl tert-butylmalonate, 759-24-0.

[^0]: (1) (a) For the previous full paper in this series, see: Finocchiaro, P.; Recca, A.; Bentrude, W. G.; Tan, H.-W.; Yee, K. C. J. Am. Chem. Soc. 1976, 98, 3537. (b) University of Utah. (c) Auburn University.
 (2) (a) Kinas, R.; Pankiewicz, K.; Stec, W. J.; Farmer, P. B.; Foster, A. B.; Jarman, M. J. Org. Chem. 1977, 42, 1650. (b) Cox, P. J.; Farmer, P. B.; Jarman, M. Biochem. Pharmacol. 1975, 24, 599. (c) Struck, R. F.; Thorpe, M. C.; Coburn, W. C., Jr.; Kirk, M. C. Cancer Res. 1975, 35, 3160. (d) Montgomery, J. A.; Struck, R. F. Cancer Treat. Rep. 1976, 60, 381. (e) Ludeman, S. M.; Zon, G. J. Med. Chem. 1975, 18, 1251. (f) Farmer, P. B.; Jarman, M.; Facchinetti, T.; Pankiewicz, K.; Stec, W. J. Chem.-Biol. Interact. 1977, 18, 47. (g) Abel, G.; Cox, P. J.; Farmer, P. B.; Haskins, N. J.; Jarman, M.; Merai, K.; Stec, W. J. Cancer Res. 1978, 38, 2592. (h) Shih, Y. E.; Wang, J. S.; Chen, C. T. Heterocycles 1978, 9, 1277. (i) Boyd, V. L.; Zon, G.; Himes, V. L.; Stalick, J. K.; Mighell, A. D.; Secor, H. V. J. Med. Chem. 1980, 23, 372.
 (3) For a thorough review, see Maryanofi, B. E.; Hutchins, R. O.; Maryanoff, C. A. Top. Phosphorus Chem. 1979, 11, 187.

[^1]: (4) Part of this work was reported earlier: (a) Bajwa, G. S.; Bentrude, W. G.; Pantaleo, N. S.; Newton, M. G.; Hargis, J. H. J. Am. Chem. Soc. 1979, 101, 1602. (b) Chandrasekaran, S. Bentrude, W. G. Tetrahedron Lett. 1980, 4671. (c) A full paper with details of the X -ray structure of cis- 5 will appear elsewhere, along with the structure of trans-5.

[^2]: (5) (a) Roca, C.; Kraemer, R.; Majoral, J.-P.; Navech, J. Org. Magn Reson. 1976, 8, 407. (b) Arshinova, R.; Kraemer, R.; Majoral, J.-P.; Navech, J. Ibid. 1975, 7, 309. (c) Durrieu, J.; Kraemer, R.; Navech, J. Ibid. 1973, 5, 407
 (6) Egan, W.; Zon, G. Tetrahedron Lett. 1976, 813.
 (7) White, D. W.; Gibbs, D. E.; Verkade, J. G. J. Am. Chem. Soc. 1979, 101, 1937.
 (8) The X-ray structure of cis-4: Newton, M. G.; Pantaleo, N.; Chandrasekaran, S.; Bentrude, W. G. Tetrahedron Lett. 1982, 1527. A feature of the structure is the pyramidal geometry found about the axial $\mathrm{Me}_{2} \mathrm{~N}$ attached to the chair-form ring.
 (9) This includes compounds described in: (a) Bentrude, W. G.; Hargis, J. H. Chem. Commun. 1969, 1113. (b) Bentrude, W. G.; Tan, H. W. J. Am. Chem. Soc. 1973, 95, 4666. (c) Unpublished results from laboratory of W. G. Bentrude.
 (10) For an example of such a J_{Hcop} relationship, see: Kung, W.; Marsh, R. E.; Kainosho, M. J. Am. Chem. Soc. 1977, 99, 5471.

[^3]: m-dichlorobenzene.

[^4]: ${ }^{a} \mathrm{H}_{\mathrm{Y}}$ overlapped with some other protion of the spectrum. ${ }^{b}$ Toluene- $d_{8} .{ }^{c} m$-Dichlorobenzene. ${ }^{d}$ All values from iterative LAOCN3 analysis at 90 MHz . ${ }^{e}$ Obliterated by solvent.

[^5]: (11) Emsley, J.; Hall, D. "The Chemistry of Phosphorus"; Wiley: New

[^6]: (13) Representative of many X-ray crystallographic studies that show this phenomenon with $\mathrm{Me}_{2} \mathrm{~N}$ attached to the 1,3,2-oxazaphosphorinane ring are: Karle, I. L.; Karle, J. M.; Egan, W.; Zon. G.; Brandt, J. A. J. Am. Chem. Soc. 1977, 99, 4803. Clardy, J. C.; Mosby, J. A.; Verkade, J. G. Phosphorus Relat. Group V Elem. 1974, 4, 151. Perales, A.; Garcia-Blanco, S. Acta Crystallogr., Sect. B 1977, B33, 1939. Camerman, A.; Smith, H. W.; Camerman, N. Ibid. 1977, B33, 678. Sternglanz, H.; Einspahr, H. M.; Bugg, C. E. J. Am. Chem. Soc. 1974, 96, 4014.

[^7]: (14) Maryanoff, B. E.; McPhail, A. T.; Hutchins, R. O. J. Am. Chem. Soc. 1981, $103,4432$.
 (15) Squillacote, M.; Sheridan, R. S.; Chapman, O. L.; Anet, F. A. J. Am. Chem. Soc. 1975, $97,3244$.
 (16) Clay, R. M.; Kellie, G. M.; Riddell, F. G. J. Am. Chem. Soc. 1973, 95, 4632.
 (17) Gorenstein, D. G.; Rowell, R. J. Am. Chem. Soc. 1979, 101, 4925. Gorenstein, D. G.; Rowell, R.; Findlay, J. Ibid. 1980, 102, 5077.

[^8]: (18) (a) Eliel, E. L.; Knoeber, M. C. J. Am. Chem. Soc. 1968, 90, 3444. (b) Riddell, F. G.; Robinson, M. J. T. Tetrahedron 1967, 23, 3417.
 (19) VanWorden, H. F.; Havinga, E. Recl. Trav. Chim. Pays-Bas 1967, 86, 341, 353. VanWorden, H. F.; Cerfontain, H.; Green, C. H.; Reijerkerk, R. J. Tetrahedron Lett. 1968, 6107.

[^9]: (20) Cope, A. C.; Hancock, E. M. J. Am. Chem. Soc. 1938, 60, 2644.

